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Here we explore the quantum-mechanical limit of bistability that appears in the spin-dependent transport
through a single quantum dot coupled to an optical microcavity. The spin current is generated by electron
tunneling between a single doped reservoir and the dot combined with intradot spin-flip transitions induced by
a quantized cavity mode. Earlier research has shown that in the classical limit where a large number of such
dots interacts with the cavity so that quantum effects were ignorable, the average spin current exhibits bista-
bility as a function of the laser that drives the cavity. We show that in the limit of a single quantum dot this
bistability continues to be present in the intracavity photon statistics. Signatures of the bistable photon statistics
manifest themselves in the frequency-dependent shot noise of the spin current despite the fact that the
quantum-mechanical average spin current no longer exhibits bistability. Besides having significance for future
quantum-dot-based optoelectronic devices, our results shed light on the relation between bistability, which is
traditionally viewed as a classical effect, and quantum mechanics.
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I. INTRODUCTION

Bistability is a phenomenon that readily occurs in classi-
cal systems that possess a nonlinear response to some input
signal. In a bistable system the output function F�I� can ex-
hibit two stable states for a certain range of the input I such
that when I is varied F�I� follows a hysteresis loop. One of
the most familiar examples is the hysteresis curve in the
magnetization of a ferromagnetic material in the presence of
an external magnetic field. In the context of electronics, digi-
tal flip-flop circuits and Schmitt triggers are common ex-
amples of bistable circuits. In nonlinear optics, optical bista-
bility �OB� occurs in the input-output function of an optical
resonator that contains a nonlinear dielectric and is driven by
a laser.1 OB has a number of applications in optical commu-
nications and computing not only because it can be used to
build all optical switches, logic gates, and optically bistable
memory devices2–6 but it is also interesting for basic studies
of phase transitions between stationary but nonequilibrium
states.3,7

Here we explore a model8 for a quantum dot �QD� “spin
current battery” that unifies research in nonlinear quantum
optics with spintronics. In the present work, we further de-
velop that model to explore how bistability manifests itself in
the quantum world. In our previous work,9 we considered the
classical limit of a large number of quantum dots, N�1,
interacting with a single optical microcavity mode such that
all quantum-mechanical effects were ignorable. It was found
that when the cavity is driven by a laser, the system exhibits
classical absorptive OB in the amplitude of the cavity field.
Because the spin current classically is a function of the cav-
ity field amplitude, the spin current also exhibits bistability
as a function of the amplitude of the driving laser which
survives even in the presence of significant inhomogeneous
variations in the dot sizes and coupling to the cavity field.
However, this bistability is a purely classical effect since a
large number of dots collectively interacts with the cavity
mode like a single classical absorber. This begs the question

of what happens if we consider only a single quantum dot
coupled to the cavity where quantum fluctuations will be so
large as to imply that the two “stable” outputs lose their
stability. We show here that while the average spin current no
longer exhibits any signature of bistability for a single dot
the frequency-dependent spin current shot noise does reveal
the underlying “stable values.”

A spin current is defined as Is=s�I↑− I↓�, which occurs
when spin-up �↑� and spin-down �↓� charge carriers are mov-
ing in the opposite direction in contrast to the charge current
Ic=q�I↑+ I↓�, where they move in the same direction. Here, I�

are the spin polarized particle currents, s=� /2 is the spin of
the particle, and q=e is the charge. The interest in spin cur-
rents comes from spintronics, which has emerged as a field
in which the spin degrees of freedom of charge carriers in
solid-state devices are exploited for the purpose of informa-
tion processing. Manipulation of the spin degrees of freedom
rather than the charge has the advantage of longer coherence
and relaxation times since the spin is more weakly coupled
to its environment.10 For the same reason, manipulation of
the spin of an electron is much harder than the charge and
therefore has resulted in significant effort to come up with
proposals for necessary spin devices including spin batteries,
spin filters, spin transistors, etc. There currently exist numer-
ous theoretical and experimental concepts for generating spin
currents in semiconductor nanostructures including spin-
orbit �SO� interactions,11,12 optical absorption,13 and Raman
scattering,14 as well as various types of quantum pumps.15–20

Electron-spin resonance �ESR� between Zeeman states in a
quantum dot connected to leads is one of the proposed mod-
els for the generation of pure spin currents.21,22 Our original
model8 extends the idea of ESR to spin flips induced by
Raman transitions inside an optical microcavity. One laser
involved in the Raman transition is a strong undepleted
pump while the other is a mode of the cavity. Inside the
cavity, both the feedback effect resulting from light “bounc-
ing” back and forth numerous times in the cavity, which is
the source of the bistability, as well as the quantum fluctua-
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tions can have a dramatic influence on the characteristics of
the spin current.

We would like to point out earlier theoretical work of a
similar nature in quantum optics that explored the limit of
“bistability” for a single atom coupled to cavity mode.23–26

They found that steady-state pseudo-phase-space distribution
of the cavity field had a bimodal structure indicative of two
“stationary” values. These states are not however stable since
quantum noise forces stochastic jumps between the two
values.25 Experiments have also shown that classical bista-
bility only emerges when the number of atoms interacting
with a cavity mode becomes much larger than 1.27 The
single-atom system is a significantly less rich physical sys-
tem than our quantum dot model since there are no leads
attached to an atom and hence no possibility of charge �or
spin� current or, for that matter, current shot noise. In con-
trast to the mentioned work from quantum optics,23–26 which
relied on quantum trajectory Monte Carlo simulations, we
utilize a standard master equation to calculate the shot noise.

In Sec. II, we briefly review our model and introduce our
mathematical formulation of the shot noise in terms of the
dot+cavity master equation. In Sec. III, we numerically
study both the average spin current and the associated shot
noise. In Sec. IV, we present our conclusions.

II. MODEL

We consider a self-assembled quantum dot embedded in a
high-Q microcavity, as depicted in Fig. 1. We are interested
in simultaneous coupling of a dot to a cavity mode and elec-
trical transport through the dot due to tunneling from a doped
reservoir. A number of experiments has already measured the
conductance and shot noise through individual self-
assembled quantum dots28–31 as well as spectroscopy of ex-
citon and charged exciton states in quantum dots with con-
trollable charging from a doped lead.32–34 Other experiments
have demonstrated strong coupling of individual dots to a
single optical microcavity mode.35,36 Recently several of

these directions have come together in the experiment by
Strauf et al.37 showing a high-efficiency single-photon quan-
tum dot source. The experiment demonstrated electrical gate
controlled charging of dot, which was embedded in a high-Q
optical microcavity, from an n-doped layer. Several other
experiments have followed demonstrating electrically driven
quantum dots embedded in high-Q micropillar cavities that
behave as single-photon sources.38,39

We assume that a single-electron reservoir at chemical
potential � is coupled to the dot via tunneling. Only a single
empty orbital energy level � of the dot lies close to �. The
Zeeman splitting between the two electron-spin states is
�=�↓−�↑=gx�BB, where B is a static magnetic field along
the x axis that is perpendicular to the growth direction �z�. �B
is the Bohr magneton and gx is the electronic g factor along
the direction of the magnetic field. The energy levels satisfy
�↑=�−� /2����↓=�+� /2, so that only spin-up electrons
can tunnel into the dot and only spin-down electrons can
tunnel out. In the limit of very large Coulomb blockade en-
ergy, which we consider here, only a single electron from the
reservoir can occupy the dot. The Zeeman states along the
direction of the B field are superpositions of spin eigenstates
along the growth direction �↑ ,↓�= �1 /�2��ĉ↑z

† �0�� ĉ↓z
† �0��,

where ĉ�
† is an electron creation operator.

Raman transitions between the dot Zeeman states �↑ ,↓�
via an intermediate trion state �+t� are induced by a �+ po-
larized laser with frequency 	L and a linearly polarized cav-
ity mode with frequency 	cav. Several experiments have al-
ready demonstrated the use of Raman scattering via an
intermediate trion state to manipulate electron-spin states in
quantum dots,33,40–42 and theoretically such processes have
been studied inside optical microcavities for use as a quan-
tum computer.43 The �+ pump creates a +3 /2 heavy hole and
an electron with spin down along the z direction according

to the Hamiltonian Hpump= ��
l /2�exp�−i	lt�ĉ↓z
† ĥ+3/2

† +H.c.,
which couples to the component of the dot Zeeman states
with spin up along z yielding a trion state with an electron
singlet. The �+ component of the cavity field along with the
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FIG. 1. �Color online� �a� Raman transition
between the dot Zeeman states �↑ ,↓� via an inter-
mediate trion state �+t� induced by a laser with
frequency 	L and a cavity mode with frequency
	cav. Both optical fields are detuned from the
trion energy by the amount �R implying that
�+t� is a virtual state. The spin eigenstates along
the direction of the magnetic field are superposi-
tions of spin eigenstates in the growth direction
ĉ�z

† �0�. �b� Schematic of a single quantum dot
indicating Zeeman energy levels in the dot and
allowed tunneling between the lead and dot. Also
shown to the right is a hypothetical configuration
of a dot in a micropillar cavity showing the direc-
tion of the magnetic field, pump laser, and cavity
decay.
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pump leads to Raman transitions via the intermediate �+t�
state that flips the electron spin while the �− component
gives rise to additional energy shifts due to the ac Stark
effect. When the two fields are far detuned by an amount �R
from the creation energy for the �+t� state, the intermediate
trion state can be adiabatically eliminated to give HI
= i�g�âĉ↓

†ĉ↑e
i	lt−H.c.�, where g=gcav
l /4�R and â is the

photon annihilation operator for the cavity mode.8,9 We have
absorbed all energy shifts of the states ��� due to the ac Stark
effect into a renormalization of the energy levels ��. Non-
resonant terms â†ĉ↓

†ĉ↑e
−i	lt+H.c. can be neglected provided

that ��− �	cav−	l��� ��+ �	cav−	l��.
As one can see in Fig. 1, if an electron enters the dot in

the spin ↑ state, a photon must be absorbed from the cavity
mode and emitted into the pump in order to generate a spin
current. It is therefore necessary to drive the cavity field. We
assume that the cavity is driven by a classical source oscil-
lating at frequency 	p, Hp= i���exp�−i	pt�â†−H.c.�, corre-
sponding to coherent coupling between a laser and the cavity
mode.1,44

The Hamiltonian in a frame rotating at the frequency 	p is
H�=H0�+HP� +HI�,

H0� = ��	cav − 	p�Â†Â + ��Ĉ↑
†Ĉ↑ + Ĉ↓

†Ĉ↓�

+ �� + 	l − 	p��Ĉ↓
†Ĉ↓ − Ĉ↑

†Ĉ↑�/2, �1�

HI� + HP� = i�g�ÂĈ↓
†Ĉ↑ − H.c.� + i���Â† − H.c.� . �2�

Here, we have defined operators in a rotating frame â

= Âei	pt, ĉ↑= Ĉ↑ exp�−i�	l−	p�t /2�, and ĉ↓= Ĉ↓ exp�i�	l
−	p�t /2�. In this work we assume that the resonance condi-
tions 	cav=	p and �=	p−	l are always satisfied, so that the

final Hamiltonian of the system is H�=��Ĉ↑
†Ĉ↑+ Ĉ↓

†Ĉ↓�
+ i�g�ÂĈ↓

†Ĉ↑−H.c.�+ i���Â†−H.c.�.
The dynamics of the system can be described in terms of

the density operator  for the cavity plus dot. The master
equation for  is given by

̇ = − i�H�,�/� − �cav�Â†Â − 2ÂÂ† + Â†Â�/2 + ̇�lead.

�3�

The first term describes coherent dynamics of the coupled
QD-cavity system, the second term represents the cavity
decay,1,44 and the third term describes QD-lead coupling. The
lead-dot coupling is most easily expressed in terms of
the matrix elements of the density operator �,��

�n,m�

= �n ,����� ,m�, where �� ,n� represents a state with n pho-
tons in the cavity and �=0, ↑ ,↓ corresponding to no elec-
trons, one spin-up, or one spin-down electron, respectively.
The specific forms of the master equations for the lead cou-
pling are8,22

̇0,0
�n,m��lead = ��−�↓,↓

�n,m� − ��+�0,0
�n,m�, �4�

̇↑,↑
�n,m��lead = ��+�0,0

�n,m�, �5�

̇↓,↓
�n,m��lead = − ��−�↓,↓

�n,m�, �6�

̇↑,↓
�n,m��lead = − ��−�↑,↓

�n,m�/2. �7�

Here, ��−� is the rate at which spin-down electrons tunnel out
of the dot into lead and ��+� is the rate at which spin-up
electrons tunnel into the dot. We assume that the tunneling
between the lead and the dot is spin independent,
��+�=��−�=�. We can rewrite Eq. �3� in matrix form

FIG. 2. �Color online� Q distribution vs Re��� and Im��� for �cav=0.2� , g=2� and in clockwise order �a� �=0.43�, �b� 0.53�, �c�
0.55�, and �d� 0.7�.
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d�/dt = M� , �8�

where 
�i,�i�
�n,m�→� is the density matrix in vector form. The

steady-state solution ̄� is given by the eigenvector of M with
zero eigenvalue. Conservation of probability ensures that M
has a zero eigenvalue.45

The spin current operator is defined as Îs=s�Î↑− Î↓� with

the stationary currents given by �Î↑�=�̄0,0 and �Î↓�=−�̄↓,↓.
Here ̄�,��=	n̄�,��

�n,n� is the reduced density matrix of the dot
after tracing over the cavity field and s=� /2. We note that
the spin current can be easily interpreted as the rate at which
spin-up electrons tunnel into the empty dot, �̄0,0, plus the
rate at which spin-down electrons leave the dot, −�̄↓,↓. The
average spin current can be expressed in terms of expectation
values of the cavity field using Eq. �3�,

�Is� = 2s�2� Re��Â�� − �cav�Â†Â�� . �9�

One sees that the spin current is also the difference between
the rate at which photons are coherently injected into the

cavity by the driving laser, 2� Re��Â��, and the rate at which

photons decay from the cavity, �cav�Â†Â�. Conservation of
energy implies that this difference must be absorbed by a
spin flip of the electron in the dot.

The noise power spectrum for the current can be ex-
pressed as the Fourier transform of the current-current corre-
lation function

S�,���	� = 2

−�

�

dt ei	t��Î��t�Î���0�� − �Î���Î���� . �10�

The spin current shot noise

S�s� = 2

−�

�

dt exp�i	t���Îs�t�Îs�0�� − �Îs��Îs��

can be written in terms of the shot-noise spectrum for the
spin-resolved currents as S�s�=s2�S↑,↑+S↓,↓−S↑,↓−S↓,↑�. It is
well known that, for currents comprised of uncorrelated par-

ticles, the noise power spectrum is Poissonian; S�	�=2q�Î�,

where q is the quantity transported by each particle in the

current Î.46 q=e in the case of standard charge currents,
while in our case the transported quantity is spin q=s. It is
often convenient to measure the shot noise relative to the
Poissonian noise by defining the Fano factor

F�	� =
S�s��	�

2sIs
, �11�

where Is is the average spin current. F�	��1 represents
super-Poissonian noise while F�	��1 represents sub-
Poissonian noise.

Here we adopt the numerical method for evaluating Eq.
�10� developed in Ref. 45 for use with master equations of
the form �8�. Briefly stated, the spectral decomposition of the

matrix M is given by M =	��P̂�, where � is an eigenvalue of

M and P̂� is the projection operator associated with that ei-
genvalue. This form of M can be used to evaluate the time

evolution of the current operators Î� and in the end yields the
following form for the spin current shot noise:

S�s��	� = 2sIs + 2 	
��0

�Tr�ÎsP̂�Îs̄�
− i	 − �

+
Tr�ÎsP̂�Îs̄�

i	 − �
� .

�12�

The first term, the Poissonian contribution, is calculated from

Is=Tr�Îs̄�. Here we note that the projection operators can be
calculated in terms of the left and right eigenvectors of M,

P̂�=v���w� ��†, where �w� ��†M =��w� ��† define the left eigenvec-
tors while Mv��=�v�� define the right eigenvectors. They sat-
isfy the orthonormality relation �w� �n

�†v��m
=�n,m. We note that

this is a different formulation of the projection operators than

what appears in Ref. 45 where P̂�=SEnS−1, with S being the
matrix whose columns are the right eigenvectors of M and
En is a square matrix that has zero entries everywhere except
the �n ,n� element, which is 1. However, it is easy to show
that these forms are mathematically equivalent.

FIG. 3. �Color online� Peak values of the Q
distribution as a function of � �in units of �� for
�cav=0.2� , g=1.4� �circles� and �cav=0.2� , g
=2� �diamonds�. For comparison, the classical
solution �14� exhibiting bistability is also shown
for the same parameters �green and black solid
lines�. One can see that the Q distribution for a
single dot qualitatively follows the classical solu-
tion although the range of � where bistability oc-
curs is reduced by quantum fluctuations.
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Finally we note that in order to numerically solve Eq. �8�
or Eq. �12�, one must choose a maximum number of cavity
photons Nmax at which to truncate the density-matrix equa-
tions. This system is very sensitive to the cutoff since a too
small Nmax can lead to the artificial build up of populated
photon states close to the cutoff that gives the appearance of
bistability when in fact this is only a numerical artifact. For
this reason, all simulations presented here used values of
Nmax=40–120 that were chosen to be sufficiently large so as
to ensure that the results were insensitive to the particular
choice of Nmax. By contrast, we note that Figs. 2 and 3 in
Ref. 9 are incorrect since the value of Nmax was unknowingly
chosen too small, namely, 20.

III. RESULTS

Our goal here is to analyze numerically the fully quantum
behavior for a single quantum dot in the parameter regime
where bistability is expected to occur. In doing so we will
compare these results to the classical theory of bistability for
N�1 quantum dots developed in Ref. 9. By contrast to Ref.
9, where only the classical average spin current was studied,
here we also focus our attention on the shot noise as a means
to reveal bistability in the quantum limit.

We first discuss the behavior of the intracavity field as a
function of the driving field amplitude �. The intracavity
field can be readily visualized in term of the Q
distribution1,44 for the cavity mode in the steady state as
shown in Fig. 2. The Q distribution is defined as

Q��� = 	
�=0,↑,↓

��,��̄��,��/� ,

where ��� is a coherent state Â���=����. It represents a
pseudo-quantum-mechanical phase-space distribution for
bosonic quantum fields where Re��� and Im���, which rep-
resent the quadrature components of the field, can be inter-
preted as the position and momentum, respectively, of a fic-

titious particle. We note that there exists a number of
different pseudo-phase-space distributions for bosonic fields
whose utility depends on the particular problem.44 We chose
the Q distribution because it is both positive semidefinite and
can also be interpreted as a probability distribution, namely,
the probability of measuring the field in the coherent state
���. This therefore allows qualitative comparisons to classi-
cal phase-space probability distributions.

In Fig. 2�a�, which corresponds to weak driving, there is
only single peak around �0. This represents a cavity that
is overdamped such that all energy injected into the cavity is
absorbed by the dot. For larger driving, as in Figs. 2�b� and
2�c�, there are two peaks: one at �0 and another at
Re����0 and Im���=0. This represents the bistable situa-
tion where the cavity field has two most probable states. By
contrast, in Fig. 2�d� one can see that the peak around �=0
has completely disappeared and only a peak with Re����0
remains when the driving is further increased. This peak cor-
responds to the case where the cavity driving is so strong that
the dot transition is saturated. For a saturated transition,
̄0,0= ̄↑,↑= ̄↓,↓=1 /3 such that the current obtains the maxi-
mum value, �IS�=s��̄0,0+�̄↓,↓�=2s� /3. Based on Eq. �9�,
the approximate location of this second peak in the Q distri-
bution is then

FIG. 4. �Color online� Average value of the spin current Is �in
units of s�� as a function of � �in units of �� for �cav=0.2� , g
=1.4�. Inset shows the classical spin current obtained from Eq. �14�
and IS=2s�2������−�cav���2�. One can see that when quantum fluc-
tuations are included, all indications of bistability are destroyed in
the average current.

FIG. 5. �Color online� �a� Fano factor F�	� for �cav=0.4� , g
=2� and different values of � �in units of ��. �b� Steady-state prob-
ability distribution for photons in the cavity for the same parameters
as in �a�. Note that 	 is measured in units of �.
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��� =
�2�/�cav� + ��2�/�cav�2 − 4�/3�cav

2
, �13�

where we note that the last term due to the lead, 4� /3�cav,
reduces the cavity field amplitude below the value of an
empty cavity �i.e., no absorber in the cavity�, 2� /�cav. Figure
3 shows the peak values of the Q distribution as a function of
� where one can see that a classic hysteresis loop emerges.
This can be compared to the classical solution for the cavity
amplitude that ignores quantum fluctuations,9

��� − �cav���/2 =
g2����

6g2���2 + �2/2
. �14�

Equation �14� is obtained from the equations of motion for
the expectation values of the cavity and dot operators by
factorizing the expectation values of products of operators

such as �Â†Ĉ↑
†Ĉ↓�→ �Â†��Ĉ↑

†Ĉ↓� �Note that one recovers Eq.
�13� from Eq. �14� in the limit that g������. One can see in
Fig. 3 that in the quantum case, the range of � values where
bistability is present has been shifted to higher values due to
quantum fluctuations.

By contrast, in Fig. 4, we present the quantum-mechanical
average spin current for a single dot as a function of the
driving amplitude. As one can see it is a single-valued quan-
tity that shows no sign of the “switch back” behavior char-
acteristic of bistability that is seen in the inset, which is the
classical spin current calculated using Eq. �14� and IS
=2s�2������−�cav���2�. In fact, the current is qualitatively the
same as that calculated for spin flips in the case of ESR using
a classical magnetic field.22 This is not surprising since one
can see from Eq. �9� that the spin current is the quantum-
mechanical expectation value of the cavity field and despite
the bimodal distribution of Q���, the spin current is averaged
over both values; �IS� P1IS,1+ P2IS,2, where Pj are the total
probabilities corresponding to each of the two peaks in Q���
and IS,j =2s�2�Re�� j�−�cav� j

�� j�, where � j are the locations
of the two peaks.

This begs the question, how does the bistable structure of
the intracavity field manifest itself in quantum-mechanical
observables? Previous work on the quantum limit of bistabil-
ity for single-atom cavity QED focused on the quantum dy-
namics using “quantum trajectories” Monte Carlo simula-
tions approach based on stochastic Schrödinger equations23

and stochastic master equations,25,26 which showed that the
cavity field and photocurrent from the cavity undergo sto-
chastic jumps between the two states given by the peaks in
the Q distribution. In these systems, the average time be-
tween switching events was proportional to the spontaneous
emission lifetime since it was the “wave-function collapse”
due to spontaneous emission of the atom that drove the sys-
tem between the two states.25

Equations �4�–�7� have a similar form to that of the master
equation for atomic decay. Therefore we can draw an anal-
ogy with earlier work and argue that wave-function collapse
resulting from electron-tunneling events into and out of the
dot will induce jumps between the two stable quantum states
of the cavity field. Since the time scale that determines trans-
port through the dot is determined by the time needed for a

spin flip, which is the Rabi frequency g�n, different cavity
field states will result in different time intervals between suc-
cessive electrons being “emitted” by the dot. One would
therefore expect that the Rabi frequencies associated with the
two stable field states would manifest themselves in the

current-current correlations �Î�t+��Î�t��.
Figures 5 and 6 show F�	� and P�n�, the probability dis-

tribution for the cavity photons, for different values of �. For
the sake of comparison, Fig. 7 shows the Fano factor for the
case of ESR, FESR�	�, with a classical field of Rabi fre-
quency R that flips the spins of the electrons.22 The classical

field ESR Hamiltonian can be obtained by replacing Â and

Â† with a c number �Â→�� in H� with R=g�. We must
emphasize that in this model of ESR in a quantum dot,21,22

there is no cavity and as a result the field that flips the spin is
simply an external parameter rather than a dynamic variable.
Since it is the feedback effect of the cavity that induces bi-
stability, bistability does not occur in ESR.

The similarity between Eqs. �4�–�7� and that of spontane-
ous emission allows us to define the critical dot number N0
=2��cav /g2, which represents in the classical theory the
minimum number of dots necessary for bistability to be
present,9,23 as well as the critical photon number nc

FIG. 6. �Color online� �a� Fano factor F�	� for �cav=0.2� , g
=1.4� and different values of � �in units of ��. �b� Steady-state
probability distribution for photons in the cavity for the same pa-
rameters as in �a�. Note that 	 is measured in units of �.
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=�2 /4g2, which defines the number of photons necessary to
significantly modify the dot response.23 Classical bistability
is predicted to occur in the limit nc→� and therefore larger
values of nc should produce more pronounced bistability in
the single-dot or -atom case.24 For both Figs. 5 and 6 N0
0.2 while for Fig. 5 nc=0.063 and for Fig. 6 nc=0.13. This
behavior with nc is confirmed in the figures where the bimo-
dality of P�n� is more visible and present for a larger range
of values in Fig. 6 as compared to Fig. 5.

In these figures, we can see that for small �, below the
threshold for the onset of bistability, F�	� is super-
Poissonian for low frequencies and Poissonian at high fre-
quencies, which is similar to the case of ESR for small R
where FESR�0�→3 /2 for R→0. For small �, the cavity is
overdamped and only the vacuum state has significant prob-
ability P�0�, and therefore transitions are primarily driven by
fluctuations above the vacuum state. In the opposite extreme
with stronger � in the bistability region, which is most clearly
seen in Fig. 6 for � /�=0.42,0.45,0.48, F�	� remains super-
Poissonian at zero frequency while at 	2g��2� a broad
sub-Poissonian dip develops whose overall width is deter-
mined by the width of P�n� around the second maximum at
n2= ��2�2. This behavior is a mixture of the ESR system for
small and large R since as already mentioned, FESR is super-
Poissonian at low frequencies R��. By contrast, the ESR
system exhibits a sub-Poissonian dip at 2R for R�� while
being nearly Poissonian at zero frequency �FESR�0�
→19 /18 for R→��. For even larger � such as � /�=1 in Fig.

5 or � /�=0.6 in Fig. 6, which places the system outside the
bistable regime, one can see that the broad sub-Poissonian
dip around 	2g��2� persists but that F�0� is no longer
super-Poissonian but rather has become sub-Poissonian.
Therefore we can conclude that the super-Poissonian behav-
ior of F�0� is attributable to the maximum in P�n� at n=0
while the sub-Poissonian dip is attributable to the maximum
in P�n� around ��2�2.

IV. CONCLUSIONS

Here we have analyzed the spin current and shot noise
from a single quantum dot embedded inside a driven optical
microcavity. We have shown that as a result of the cavity-
field-induced spin flips, the quantum bistability present in the
cavity field Q distribution manifests itself also in the spin
current shot noise from the dot. These results indicate that
despite the large quantum fluctuations that wipe out all trace
of the bistability in the average current, the shot noise reveals
the underlying bimodal distribution of the cavity field. This
works implies that there is no need to make recourse to more
complicated methods such as stochastic wave-function meth-
ods in order to detect bistability in the presence of large
quantum fluctuations.
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